

> smith&nephew

Hip product review

David Kelman, PEGroup Director Hip Development
15th November, 2006

Years Innovation. For generations.

What does our strategy mean for products?

Retain

Helps patients retain an active lifestyle, with no restrictions on post-procedure activities (SUPARTZ°)

Restore

Restores normal function with advanced implants & surgical techniques (COMPETITOR*, JOURNEY*, BHR*)

Replace

Replaces patient joints with artificial devices

(SYNERGY°, PROFIX°, GENESIS° II)

Rebuild

Rebuilds the body to recover from implant failure

(LEGION°, EMPERION°)

Hip product portfolio

Source: Solucient, 2005

Today's 65 senior is not *really* 65

1960 active senior

2006 active senior

Smith & Nephew orthopaedics hip portfolio

Clinical performance

SPECTRON° stem

100% survival rate of the SPECTRON stem at 12 years ¹

97.0% survival rate of SPECTRON stem at 9.6 years ²

99.7% survival rate of SPECTRON EF at 7 yrs ³

SYNERGY^o stem

99.5% Survivorship ⁴

- 1. The Charnley Versus the Spectron Hip Prosthesis", *The Journal of Arthroplasty Vol. 14 No. 14 1999*, Goran Garellick, et al MD, PhD.
- "Hip Arthroplasty With a Collared Straight Cobalt-Chrome Femoral Stem Using Second Generation Cementing Technique", The Journal of Arthroplasty Vol. 15 No. 2 2000, Ashay Kale, MD et al.
- Swedish National Hip Registry, 2000 Report, Henrik Malchau, MD, PhD

 Bourne, Robert, M.D., F.R.C.S.; Rorabeck, Cecil, M.D., F.R.C.S.; The London Health Sciences Centre Experience: Synergy Tapered Hip System; International Hip Meeting. Prague, Czech Republic. May 2001

Knowledge of the shape of the femur

- Extensive knowledge of the femoral shape based on
 - CT database
 - Radiographic analysis
 - Clinical analysis
- Ability to apply this knowledge to design implants that properly fit the geometric shape of the femur

Re-establishing the biomechanics of the hip

The first to promote the re-establishment of the natural biomechanics of the hip

- Place the center of the femoral head and the shaft of the femur to the natural locations
 - Dual offsets femoral stems
 - Appropriate range of offsets for the stem size
- Enhanced Range of Motion
 - Circulotrapezoidal neck geometry
 - Femoral heads with significant neck length adjustment without compromising ROM
 - Acetabular components designed with enhanced ROM

Instrumentation

- Easy to use instrumentation
- Standardization between systems
- Ergonomic instrumentation
- Reduced number of instruments
- Instruments laid out in order of use

Hip product highlights for 2007

ANTHOLOGY[⋄] stem

EMPERION[⋄] stem

ANTHOLOGY Hip System

- Value proposition
- The ANTHOLOGY° system provides the surgeon a press-fit implant that is optimum for all femur types
- It is designed to be MIS friendly, reduce dislocations, and be more bone and tissue conserving than previous primary implant designs

EMPERION° Modular Hip System

Versatile

- Primary and Revision Implant Options
- Treats more indications than the competition
- Optimal solution for patients with difficult anatomy
- Modular titanium stem
- Infinite version adjustment
- Simple nomenclature, instrumentation, & procedure

Surgery: paint by number

Distal diameter of stem (mm)	Color
9	
11	
13	
15	
17	
19	
21	
23	

Color-coded trials

Primary OA case

Proximal – distal mismatch

Complete revision portfolio

Proximal and distal mismatch

EMPERION stem

- Proximal fit and distal fill
- Proximal fixation
- Version control

Distal fixation

ECHELON° stem

- Extensively porous coated
- Porous Plus HA
- Cemented option

Types of revisions and stems to use

Paprosky's Revision Classification System			
Type 1	Type 2	Type 3	
EMPERION° stem	EMPERION stem	ECHELON stem	
	ECHELON° stem	EMPERION stem (Tall Sleeve)	

Future opportunities

Using technology to address opportunities

- Implant
 - Biomechanics
 - Fixation
 - Bone/tissue preservation
 - Longevity
- Instrumentation
 - Reproducibility
 - Ergonomics
 - Simplicity
 - Efficiency

> We are smith&nephew